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Given compact Riemannian manifolds M and N and p ∈ (1,∞), the ques-
tion of traces for Sobolev mappings consists in characterising the mappings from
∂M to N that can arises of maps in the first-order Sobolev space Ẇ 1,p(M,N ).
A direct application of Gagliardo’s characterisation of traces for the linear spaces
Ẇ 1,p(M,R) shows that traces of maps in Ẇ 1,p(M,N ) should belong to the frac-
tional Sobolev-Slobodeckĭı space Ẇ 1−1/p,p(∂M,N ). There is however no reason
for Gagliardo’s linear extension to satisfy the nonlinear constraint imposed by
N on the target.

In the case p > dimM, Sobolev mappings are continuous and thus traces of
Sobolev maps are the mappings of Ẇ 1−1/p,p(∂M,N ) that are also restrictions
of continuous functions [2]. The critical case p = dimM can be treated similarly
thanks to their vanishing mean oscillation property [2, 3, 6].

The case 1 < p < dimM is more delicate. It was first proved that when
the first homotopy π1(N ), . . . , π⌊p−1⌋(N ) are trivial, then the trace operator
from Ẇ 1,p(M,N ) to Ẇ 1−1/p,p(∂M,N ) is surjective [4]. On the other hand,
several conditions for the surjectivity have been known: topological obstructions
require π⌊p−1⌋(N ) to be trivial [2, 4] whereas analytical obstructions arise unless
the groups π1(N ), . . . , π⌊p−1⌋(N ) are finite [1] and, when p ≥ 2 is an integer,
πp−1(N ) is trivial [5].

In a recent work, I have completed the characterisation of the cases where
the trace is surjective, proving that the known necessary conditions turn out
to be sufficient [7]. I extend the traces thanks to a new construction which
works on the domain rather than in the image. When p ≥ dimM the same
construction also provides a Sobolev extension with linear estimates for maps
that have a continuous extension, provided that there are no known analytical
obstructions to such a control.
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