Configuration spaces and multiple positive solutions to a singularly perturbed elliptic system

Andrzej Szulkin

Department of Mathematics, Stockholm University, Stockholm, Sweden andrzejs@math.su.se

We consider the elliptic system of ℓ equations

$$\begin{cases} -\varepsilon^2 \Delta u_i + u_i = \left(\sum_{j=1}^{\ell} \beta_{ij} u_j^2\right) u_i, \\ u_i \in H_0^1(\Omega), \quad u_i \neq 0, \quad i = 1, \dots, \ell, \end{cases}$$
(*)

where $\varepsilon > 0$ is a small parameter, Ω is a bounded smooth domain in \mathbb{R}^N , N = 2or 3, $\ell \ge 2$, $\beta_{ii} > 0$ and $\beta_{ij} = \beta_{ji} < 0$ if $i \ne j$. The equation in (*) corresponding to $\ell = 1$ is $-\varepsilon^2 \Delta u + u = \beta_{11} u^3$ and for certain Ω , e.g. Ω = ball, there exists exactly one positive solution. If $\ell = 2$, then the equations in (*) are

 $-\varepsilon^2 \Delta u_i + u_i = (\beta_{ii} u_i^2 + \beta_{ij} u_j^2) u_i, \quad i = 1, \ j = 2 \text{ or } i = 2, \ j = 1,$

and it is known that for small ε there exist at least 2 positive solutions which concentrate as $\varepsilon \to 0$. A natural question is whether the minimal number of positive solutions increases with ℓ . We show that this is the case and if ε is small, then the number of such solutions is at least ℓ . The proof is by estimating the Lusternik-Schnirelman category of a certain level set of the functional associated with (*) in terms of the category of suitable configuration spaces. A crucial fact is that the category of the configuration space of ℓ points in \mathbb{R}^N equals ℓ (a result due to F. Roth).

This is joint work with Mónica Clapp and Alberto Saldaña.