Normalised solutions to a Schrödinger equation with potential

Matteo Rizzi

Justus Liebig University

This is a joint work with Thomas Bartsch (Justus Liebig University, Giessen, Germany), Riccardo Molle (University of Roma 2, Rome, Italy) and Gianmaria Verzini (Politecnico di Milano, Milano, Italy)

In [1] we consider a Schrödinger type equation of the form

$$-\Delta u + (\lambda + V(x))u = |u|^{p-2}u \tag{1}$$

in \mathbb{R}^N , with a non radial potential V under the mass constraint

$$\int_{\mathbb{R}^N} v^2 = \rho^2.$$
(2)

We provide some sufficient conditions about V for existence of solutions $(u, \lambda) \in H^1(\mathbb{R}^N) \times (0, \infty)$ for powers $2 + \frac{4}{N} . The potential is allowed to have singularities. <math>\lambda$ appears as a Lagrange multiplier, due to the mass constraint (2). The proof is variational, based on a min-max argument.

References

 T. Bartsch, R. Molle, M. Rizzi, G. Verzini, Normalized solutions of mass supercritical Schrödinger equations with potential. (English summary) Comm. Partial Differential Equations 46 (2021), no. 9, 1729–1756.