Boundary value problems for ordinary differential systems with generalized variable exponents operators

Jean Mawhin

Institut de Recherche Mathématique et Physique Université Catholique de Louvain

In recent years an increasing interest in more general operators generated by Musielak-Orlicz functions is under development since they provide, in principle, a unified treatment to deal with ordinary and partial differential equations with operators containing the p-Laplacian, the ϕ -Laplacian, operators with variable exponents and the double phase operators.

These kind of considerations lead to consider quasilinear problems containing operators of the type $(\mathcal{S}(t,u'))'$, and look for nonlinear systems of ordinary differential equations of the form

$$(\mathcal{S}(t, u'))' = f(t, u, u')$$

submitted to various two-point boundary conditions.

Our approach consists to work in C^1 spaces to obtain suitable abstract fixed point and continuation theorems, from which several applications are obtained, including problems of Liénard and Hartman type.

This is a joint work with M. Garcia-Huidobro, R. Manásevich and S. Tanaka.